A multidimensional version of Turán's lemma

Natacha Fontes-Merz ${ }^{1}$
Department of Mathematics and Computer Science, Westminster College, New Wilmington, PA 16172, USA

Received 22 August 2005; accepted 25 November 2005
Communicated by Tamás Erdélyi
Available online 3 February 2006

Abstract

In this article we provide a multidimensional version of Nazarov's extension of Turán's lemma-a result in which the uniform norm of a complex-valued polynomial, p, on the unit circle \mathbb{T} is compared with the uniform norm of p on any measurable subset of \mathbb{T}. If we let $\mathbb{T}^{n}:=\mathbb{T} \times \cdots \times \mathbb{T}$ represent the distinguished boundary of the polydisk $D^{n}:=D \times \cdots \times D$ for $n \in \mathbb{N}$ and D the open unit disk then, as in the one dimensional case, the constant which relates the uniform norm of p on \mathbb{T}^{n} to the uniform norm of p on any measurable subset E of \mathbb{T}^{n} depends on the order of p and the measure of the set E.

© 2005 Elsevier Inc. All rights reserved.
MSC: 41A05; 41A17; 41A58; 41A63

Keywords: Multivariate polynomial inequalities; Turán's lemma

1. Introduction

Let \mathbb{T} denote the unit circle and D the open unit disk. Let $p: \mathbb{T} \rightarrow \mathbb{C}$ be the polynomial defined by $p(z):=\sum_{k=0}^{m} c_{k} z^{r_{k}}$ for $c_{k} \in \mathbb{C} \backslash\{0\}$ and $r_{0}<r_{1}<\cdots<r_{m} \in \mathbb{Z}$, so that the order of p, i.e., the number of non-zero coefficients of p, is $m+1$. Also, for any subset S of \mathbb{T} define the norm of p on S to be $\|p\|_{S}:=\sup _{z \in S}|p(z)|$. Let λ represent the normalized Lebesgue measure on \mathbb{T}.

[^0]Nazarov's extension of Turán's lemma is the following:
Theorem 1 (Nazarov [2,3]). Let E be any measurable subset of \mathbb{T} with $\lambda(E)>0$. Then

$$
\|p\|_{\mathbb{T}} \leqslant\left(\frac{14}{\lambda(E)}\right)^{m}\|p\|_{E} .
$$

In contrast to Turán, who assumed E to be an arc of T, Nazarov generalized Turán's original result [5] by considering the set E to be any measurable subset of \mathbb{T}.

Theorem 1 is interesting in that we can gain information about the maximum modulus of p on \mathbb{T} by only knowing the maximum modulus of p on $E \subseteq \mathbb{T}$. Of course, if the measure of E is small, the constant term $\left(\frac{14}{\lambda(E)}\right)^{m}$ is large, thus making the upper bound less precise; we should not expect to gain explicit bounds for $\|p\|_{\mathbb{T}}$ if we are only given information about the maximum value of p on a very small subset of \mathbb{T}.

It is also interesting to note that the constant $\left(\frac{14}{\lambda(E)}\right)^{m}$ depends on the order of p rather than the degree of p. It is easier to prove this lemma in the case that p is of degree m, rather than of order $m+1$ [1].

2. Multidimensional result

In this paper, we would like to prove a multidimensional version of Nazarov's extension of Turán's lemma. Before doing so, we must introduce the following standard multivariate notation [4]: let $\mathbb{T}^{n}:=\mathbb{T} \times \mathbb{T} \times \cdots \times \mathbb{T}$ be the distinguished boundary of the polydisk $D^{n}:=D \times D \times \cdots \times D$ and define $\mathbf{z} \in \mathbb{T}^{n}$ by $\mathbf{z}:=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{T}^{n}$.

In order to define a polynomial $p: \mathbb{T}^{n} \rightarrow \mathbb{C}$, let the index k of the polynomial be given by $k=\left(k_{1}, \ldots, k_{n}\right)$ for $0 \leqslant k_{i} \leqslant m_{i}, m_{i} \in \mathbb{Z}^{+}$. Let the exponents r_{k} of \mathbf{z} be defined by $r_{k}=$ $\left(r_{1, k_{1}}, r_{2, k_{2}}, \ldots, r_{n, k_{n}}\right)$ where $r_{i, 0}<r_{i, 1}<\cdots<r_{i, m_{i}} \in \mathbb{Z}$. Define $\mathbf{z}^{r_{k}}:=z_{1}^{r_{1, k_{1}}} z_{2}{ }^{r_{2, k_{2}}} \cdots z_{n}{ }^{r_{n, k_{n}}}$ and let $c(k)$ be non-zero coefficients in \mathbb{C}. We define the polynomial $p: \mathbb{T}^{n} \rightarrow \mathbb{C}$ by $p(\mathbf{z}):=$ $\sum_{k} c(k) \mathbf{z}^{r_{k}}$. So, for example, in the case that $n=2, p$ has the form

$$
p\left(z_{1}, z_{2}\right)=\sum_{k_{2}=0}^{m_{2}} \sum_{k_{1}=0}^{m_{1}} c_{k_{1}, k_{2}} z_{1}^{r_{1, k_{1}}} z_{2}^{r_{2, k_{2}}} .
$$

Let λ be the normalized Lebesgue measure on \mathbb{T}^{n} and define the uniform norm of p on any subset S of \mathbb{T}^{n} to be $\|p\|_{S}=\sup _{\mathbf{z} \in S}|p(\mathbf{z})|$. The following is a multidimensional version of Nazarov's extension of Turán's lemma:

Theorem 2. Let $p(\mathbf{z}):=\sum_{k} c(k) \mathbf{z}^{r_{k}}$. If $E \subseteq \mathbb{T}^{n}$ is a measurable set with $\lambda(E)>0$, then

$$
\|p\|_{\mathbb{T}^{n}} \leqslant\left(\frac{14 n}{\lambda(E)}\right)^{m_{1}+m_{2}+\cdots+m_{n}}\|p\|_{E}
$$

Proof. We will proceed using induction on the dimension n. Due to Theorem 1, it has already been shown that the base case, $n=1$, is true. Assume that the theorem holds for all $n \leqslant j$ for some $j \in \mathbb{Z}^{+}$. We wish to prove that the result holds in the case $n=j+1$.

Assume $E \subseteq \mathbb{T}^{j+1}$ is a measurable set with positive measure and let $p: \mathbb{T}^{j+1} \rightarrow \mathbb{C}$ be defined by $p(\mathbf{z}):=\sum_{k} c(k) \mathbf{z}^{r_{k}}$. For any $z \in \mathbb{T}$ define $E_{z}:=\left\{\left(z_{1}, \ldots, z_{j}\right) \in \mathbb{T}^{j}:\left(z_{1}, \ldots, z_{j}, z\right) \in E\right\}$.

Define $B:=\left\{z \in \mathbb{T}: \lambda\left(E_{z}\right) \geqslant \frac{\lambda(E)}{C}\right\}$ where $C:=\frac{j+1}{j}$, so that if $z \in B$, then the measure of E_{z} is bounded away from zero, and say that $\|p\|_{\mathbb{T}^{j+1}}:=\left|p\left(w_{1}, \ldots, w_{j+1}\right)\right|$ for some $\left(w_{1}, \ldots, w_{j+1}\right) \in$ \mathbb{T}^{j+1}. Then by applying Theorem 1 to the polynomial $p\left(w_{1}, \ldots, w_{j}, z\right)$ and the set B we get that

$$
\|p\|_{\mathbb{T}^{j+1}} \leqslant\left(\frac{14}{\lambda(B)}\right)^{m_{j+1}} \sup _{z \in B}\left|p\left(w_{1}, \ldots, w_{j}, z\right)\right| .
$$

Therefore, given any $\varepsilon>0$, there exists some $z_{*} \in B$ for which

$$
\|p\|_{\mathbb{T}^{j+1}} \leqslant\left(\frac{14}{\lambda(B)}\right)^{m_{j+1}}\left(\left|p\left(w_{1}, \ldots, w_{j}, z_{*}\right)\right|+\varepsilon\right)
$$

By assumption, we may also apply Theorem 2 to the polynomial $p\left(z_{1}, \ldots, z_{j}, z_{*}\right)$ and the set $E_{z_{*}} \subseteq \mathbb{T}^{j}$. This gives us that

$$
\begin{aligned}
\sup _{\left(z_{1}, \ldots, z_{j}\right) \in \mathbb{T}^{j}}\left|p\left(z_{1}, \ldots, z_{j}, z_{*}\right)\right| & \leqslant\left(\frac{14 j}{\lambda\left(E_{z_{*}}\right)}\right)^{m_{1}+m_{2}+\cdots+m_{j}} \sup _{\left(z_{1}, \ldots, z_{j}\right) \in E_{z *}}\left|p\left(z_{1}, \ldots, z_{j}, z_{*}\right)\right| \\
& \leqslant\left(\frac{14 j}{\lambda\left(E_{z_{*}}\right)}\right)^{m_{1}+m_{2}+\cdots+m_{j}}\|p\|_{E}
\end{aligned}
$$

since $\left(z_{1}, \ldots, z_{j}, z_{*}\right) \in E$ for $\left(z_{1}, \ldots, z_{j}\right) \in E_{z_{*}}$.
By combining these two results and taking the limit as ε approaches zero, we have

$$
\begin{equation*}
\|p\|_{\mathbb{T}^{j+1}} \leqslant\left(\frac{14}{\lambda(B)}\right)^{m_{j+1}}\left(\frac{14 j}{\lambda\left(E_{z_{*}}\right)}\right)^{m_{1}+m_{2}+\cdots+m_{j}}\|p\|_{E} \tag{1}
\end{equation*}
$$

Therefore, in order to complete the proof we must find lower bounds for $\lambda\left(E_{z_{*}}\right)$ and $\lambda(B)$ in terms of $\lambda(E)$.

Note

$$
\lambda\left(E_{z_{*}}\right) \geqslant \frac{\lambda(E)}{C}
$$

since $z_{*} \in B$. Let B^{C} denote the complement of the set B. By considering the geometry of the set E, and the maximum values that $\lambda\left(E_{z}\right)$ can take for any $z \in B$ and for any $z \in B^{C}$ respectively, we get that

$$
\begin{aligned}
\lambda(E) & \leqslant \lambda(B)(1)^{j}+\lambda\left(B^{C}\right) \cdot \frac{\lambda(E)}{C} \\
& \leqslant \lambda(B)+\frac{\lambda(E)}{C}
\end{aligned}
$$

This implies that

$$
\lambda(B) \geqslant \lambda(E)\left(\frac{C-1}{C}\right)
$$

Plugging in these estimates for $\lambda\left(E_{z_{*}}\right)$ and $\lambda(B)$ in (1) and using the fact that $C=\frac{j+1}{j}$ gives us

$$
\|p\|_{\mathbb{T}^{j+1}} \leqslant\left(\frac{14(j+1)}{\lambda(E)}\right)^{m_{1}+m_{2}+\cdots+m_{j+1}}\|p\|_{E},
$$

which completes the proof.

Surprisingly, in contrast to the univariate version of this theorem, in higher dimensions the exponent $m_{1}+m_{2}+\cdots+m_{n}$ on the constant relating the two norms of p, is much smaller than the order $\left(m_{1}+1\right)\left(m_{2}+1\right) \cdots\left(m_{n}+1\right)$ of the polynomial.

References

[1] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, Berlin, 1995.
[2] F. Nazarov, Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type, Algebra i Analiz 5 (4) (1993) 3-66; translation in St. Petersburg Math. J. 5 (4) (1994) 663-717.
[3] F. Nazarov, Complete Version of Turán's Lemma for Trigonometric Polynomials on the Unit Circumference (English Summary), Complex Analysis, Operators, and Related Topics, Birkhäuser, Basel, 2000, pp. 239-246.
[4] W. Rudin, Function Theory in Polydiscs, Benjamin, New York, 1969.
[5] P. Turán, On a New Method in Analysis and its Applications, Wiley-Interscience, New York, 1984.

[^0]: E-mail address: fontesnc@westminster.edu
 ${ }^{1}$ With many thanks to Dr. Alfred Cavaretta for suggesting this problem to me and for all his help. I am also indebted to the referee for helpful comments and future considerations.

